Метод сведения к ранее решенным.

Суть обучения данному методу заключается в обучении школьников увидеть в данной задаче ранее решенную и сведению решаемой задачи с помощью последовательных преобразований к ней.

Если, например, нужно решить уравнение то обычно составляют такую конечную последовательность уравнений, эквивалентных данному, последним звеном которого является уравнение с очевидным решением.

Аналогично поступают и при решении различного вида уравнений, неравенств и систем уравнений. Особую роль этот метод играет при нахождении производной.

Пример:(

из уч. Колмогорова )

Найдите производную f(x) = cos2x•sinx + sin2x•cosx

cos2x•sinx + sin2x•cosx = sin(2x+x) по формуле сложения

f(x) = sin(2x+x) => f(x) = sin3x

Из полученного равенства найти производную не составляет особого труда.

Изучению данного метода в школьном курсе способствует тема «Разложение на множители» (7 класс).

А ещё раньше использование этого метода можно увидеть при решении текстовых задач, когда исходная задача сводится к нескольким простым задачам. Здесь можно увидеть тесную связь метода сведения с аналитико – синтетическим методом.

В школьном курсе данный метод используется очень широко в тригонометрии (при решении уравнений и неравенств). Так в самом начале изучения данной темы учащимся предлагают заучить основные тригонометрические тождества, затем формулы сложения, приведения, суммы и разности. А в дальнейшем сначала вырабатываются умения и навыки решения простейших тригонометрических уравнений.

Пример: (из уч.Колмогорова). Найдите значение других трех основных тригонометрических функций, если sinα= - 0.8, Π<α<3Π/2

После этого переходят к более сложным выражениям, но теперь уже формируются навыки по приведению их к простейшим.

Конечно, указанное сведение нужно понимать и как выведение, как конечную последовательность, ведущую от искомых к данным. Этот метод наиболее часто применяется в тех случаях, в которых заданное отношение обладает свойством транзитивности. Таковы отношения эквивалентности (равенства, уравнения, тождества, логическая равносильность, параллельность) и порядка (строгие и нестрогие неравенства, включение множеств, логическое следование). Прием "сведения" лежит в основе решения геометрических задач на построение. В каждой задаче этого вида содержится требование: исходя из данных фигур (или данных их элементов), с помощью указанных конструктивных элементов построить фигуру, удовлетворяющую определенным условиям. Это означает, что требуемое построение должно быть сведено к так называемым элементарным построениям, выполняемым реальными инструментами.

Метод сведения находит постоянные применения при решении текстовых задач арифметическими способами. Суть дела здесь состоит в том, что данная задача сводится к простым задачам.

Решение задач на доказательство теорем в своей основе имеет также сведение: доказываемое утверждение сводится к ранее доказанным теоремам и ранее введенным аксиомам и определениям данной научной области. Доказать - это, значит, свести новую теорему (задачу) в конечном счете, к аксиомам.

Перейти на страницу: 1 2