Неевклидова геометрия

Прямая CL не может пересечь прямой АВ в какой- либо точке М, так как если бы это случилось, то угол DKC , внешний по отношению к треугольнику KCM , равнялся бы внутреннему, не смежному с ним углу треугольника KCM, что противоречит абсолютной геометрии о внешнем угле треугольника. Итак, через т. С, кроме CN , проходит еще одна прямая – CL, не встречающая прямой АВ ; следовательно, верна аксиома Лобачевского. Разность 2d – S, то есть между 2d и суммой углов данного треугольника, называется угловым дефектом этого треугольника.

3. Предложение «сумма углов четырехугольника меньше 4d» вытекает из предыдущего. Отсюда следует, что в геометрии Лобачевского нет ни прямоугольников, ни квадратов. Вообще сумма углов n – угольника меньше 2d(n-2).

4. Внешний угол треугольника больше суммы внутренних, с ним не смежных углов. Действительно, пусть d - внешний угол треугольника, смежный с внутренним углом треугольника a , и пусть b и g - остальные его внутренние углы, тогда: a + d = 2d.

Следует, что d > b + g .

Если три угла одного треугольника соответственно равны трем углам другого треугольника, то эти треугольники равны между собой. Это четвертый признак равенства треугольников в геометрии Лобачевского.

Таким образом, в плоскости Лобачевского треугольник вполне определяется своими углами. Стороны и углы зависят друг от друга. Отсюда ясно, что в геометрии Лобачевского нет подобных фигур. Действительно, ведь из существования подобных фигур вытекает евклидова аксиома параллельности (доказательство Валлиса).

Площади. Уже известно, что, чем меньше размеры фигур, которые мы изучаем, тем ближе к геометрии Евклида, в которой угловой дефект треугольника равен 0. Доказывается следующая теорема: площадь треугольника прямопропорциональна его угловому дефекту. Чем меньше размеры фигуры, тем меньше ее дефект, тем меньше площадь. Однако угловой дефект по определениям не может превзойти 2d, следовательно, и площадь треугольника в геометрии Лобачевского не может стать больше некоторой, определенной, конечной величины.

Таковы некоторые из основных идей и фактов геометрии Лобачевского. После работы «О началах геометрии», появились в свет и другие произведения Лобачевского по неевклидовой геометрии: «Воображаемая геометрия» (1835), «Применение воображаемой геометрии к некоторым интегралам» (1836), «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках Казанского университета» в 1835-1838г.г., «Геометрические исследования по теории параллельных» (опубликованы впервые в1840г. в Берлине на немецком языке). Однако идеи Лобачевского были настолько революционными и до того опередили свой век, что не могли быть понятыми даже крупными математиками того времени. Поэтому новая геометрия не была признана современниками, была встречена с полным равнодушием и даже с иронией. Ее многие считали сплошной фантазией, а ее автора чудаком или даже невеждой. Одинокий Лобачевский не отказался от своих идей. Он твердо был убежден в логической правильности неевклидовой геометрии. Чтобы можно было это доказать, Лобачевский предпринимал астрологические наблюдения, и производил измерения углов космических треугольников, стороны которых измерялись расстояниями от Земли до небесных тел, в надежде установить, равна ли сумма углов треугольника 2dили она меньше двух прямых углов. Однако, измерения не могли дать определенного результата в силу их приближенного характера. Лобачевский всю жизнь искал оправдания своей геометрии в механике и астрономии и не переставал верить, что торжество его идей неминуемо.

Перейти на страницу: 4 5 6 7 8 9 10 11 12 13 14